Non-singular boundary integral methods for fluid mechanics applications

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Variational Methods for Boundary Integral Equations: Theory and Applications

Variational methods for boundary integral equations deal with the weak formulations of boundary integral equations. Their numerical discretizations are known as the boundary element methods. The later has become one of the most popular numerical schemes in recent years. In this expository paper, we discuss some of the essential features of the methods, their intimate relations with the variatio...

متن کامل

CAS WAVELET METHOD FOR THE NUMERICAL SOLUTION OF BOUNDARY INTEGRAL EQUATIONS WITH LOGARITHMIC SINGULAR KERNELS

In this paper, we present a computational method for solving boundary integral equations with loga-rithmic singular kernels which occur as reformulations of a boundary value problem for the Laplacian equation. Themethod is based on the use of the Galerkin method with CAS wavelets constructed on the unit interval as basis.This approach utilizes the non-uniform Gauss-Legendre quadrature rule for ...

متن کامل

Galerkin Methods for Singular Integral Equations

The approximate solution of a singular integral equation by Galerkin's method is studied. We discuss the theoretical aspects of such problems and give error bounds for the approximate solution.

متن کامل

Optimal convergence for adaptive IGA boundary element methods for weakly-singular integral equations

In a recent work (Feischl et al. in Eng Anal Bound Elem 62:141-153, 2016), we analyzed a weighted-residual error estimator for isogeometric boundary element methods in 2D and proposed an adaptive algorithm which steers the local mesh-refinement of the underlying partition as well as the multiplicity of the knots. In the present work, we give a mathematical proof that this algorithm leads to con...

متن کامل

Fluid Mechanics : Numerical Methods

where σ is the stress tensor, ǫ = 12 (∇u +∇u) T is the strain tensor, f is a body force per unit mass (gravity is a typical example), qT is a volume source (it may model chemical reactions, Joule effects, radioactive decay, etc.), and jT is the heat flux. In addition to the above three fundamental conservation equations, one may also have to add L equations that accounts for the conservation of...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Fluid Mechanics

سال: 2012

ISSN: 0022-1120,1469-7645

DOI: 10.1017/jfm.2012.71